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We present an experimental and theoretical investigation of some aspects of the 
coupling between a premixed laminar quasi-planar flame front and acoustic standing 
waves in tubes. A multidimensional instability of the front arises from its interaction 
with the oscillating field of acceleration. This instability can be described by the 
Clavin-Williams laminar wrinkled flame theory in which the periodic acceleration 
created by the acoustic field is added to the acceleration due to gravity. As first 
suggested by Markstein, the resulting equation can be reduced to the Mathieu 
equation for a parametric oscillator. A cellular instability appears with a finite 
excitation threshold. This instability is responsible for the spontaneous generation of 
intense acoustic oscillations observed elsewhere. The value of the acoustic field at  the 
threshold of instability and the wavelength of the cellular structures are measured 
experimentally for propane flames and are found to be in good agreement with the 
calculated values. It is also seen, both experimentally and theoretically, that for 
certain amplitudes of pumping, the parametric mechanism can also stabilize an 
initially unstable system. 

1. Introduction 
It has been known for a long time that flames can spontaneously produce acoustic 

oscillations in tubes and other enclosures (Mallard & Le Chatelier 1883). The 
generation of sound is a feed-back process in which the sound wave modulates the 
heat release from the flame and this modulation of heat release feeds energy back into 
the sound wave. Rayleigh’s criterion (Rayleigh 1878) states that the acoustic wave 
will be amplified if the fluctuations in heat release and in acoustic pressure are in 
phase. A number of different mechanisms (see below) have been proposed to explain 
the modulation of combustion heat release by sound, but no clear picture has 
emerged of their relative importance in any particular situation. 

In  this paper we will be concerned with a premixed flame propagating freely in a 
tube closed at one end and open at  the other. The acoustic modes are longitudinal 
with a velocity node a t  the closed end. This configuration has been studied 
experimentally by Kaskan (1953) who concludes that the coupling to the acoustic 
field is essentially due to variations of the flame surface area within the oscillating 
acoustic boundary layer close to the walls of the tube. On the other hand Markstein 
(1951, 1953, 1964, 1970) and Leyer (1969) have produced theoretical and 
experimental evidence to suggest that the coupling arises from variations in the 
flame area produced by oscillations of the amplitude of cellular structures subjected 
to the acoustic acceleration field. Dunlap (1950) has suggested that the adiabatic 
temperature fluctuation caused by a pressure wave will modulate the local heat 
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release rate of a premixed flame with the correct phase relationship. Clavin, Pel& & 
He (1990) have treated this last effect in detail using a one-step high-activation 
energy flame. They show theoretically that the strength of this one-dimensional 
coupling is weak but can be sufficient, in some cases, to overcome the natural 
acoustic damping of a tube. 

In recent experimental study of premixed propane flames in a tube, Searby (1991) 
has observed two different self-excited acoustic instabilities which can occur 
successively in time and in space for a given mixture. For moderately slow lean 
flames (laminar flame speed in the range 1&25 cm/s in a 1.2 metre tube) he observes 
a ‘primary’ acoustic instability that saturates in amplitude producing a flat flame. 
The initial growth rate of the primary instability is much higher than that expected 
for the one-dimensional instability of Clavin et al. This ‘primary’ instability has been 
studied theoretically by Pel& & Rochwerger (1991). For faster flames Searby 
observes that the ‘primary’ instability is followed by a ‘secondary’ instability, with 
an even faster growth rate, which produces a pulsating cellular flame. This paper is 
mainly concerned with the interpretation of the ‘ secondary ’ instability. 

The origin of the secondary instability is similar to that of the Faraday instability 
(Faraday 1831) observed for free liquid surfaces subjected to a periodic vertical 
acceleration. The pulsating cells oscillate with a period that is twice the acoustic 
period. This frequency halving in a flame producing acoustic oscillations was first 
noticed by Markstein (1953) who recognized it as being the characteristic signature 
of a parametrically pumped oscillator. A parametric oscillator is a resonant system 
which is driven by a time dependent modulation of the restoring force, or natural 
frequency, rather than by an external force (see Landau 6 Lifchitz 1966, for 
example). Markstein has developed an analysis based on a phenomenological model 
of the flame front (Markstein 1951, 1964, 1970). Leyer (1969) has studied a self- 
excited flame in a tube and confirms the main results of Markstein’s work. This 
mechanism of pyro-acoustic instability seems to have been overlooked in more recent 
work. 

The advances presented in this paper are twofold. First, we show how a theoretical 
description of the parametric instability can be derived rigorously using laminar 
flame theory developed recently. We consider only the effect of a given acoustic wave 
on the combustion front. The complete acoustic problem is not addressed here. It will 
be seen that, in general, there are two unstable branches which are identified with the 
‘ primary ’ and ‘ secondary ’ instabilities mentioned above. The laminar flame model 
describes the effects of weak curvature exactly and allows quantitative comparison 
with experimental results. The details of the internal structure of the flame appear 
only via a single dimensionless parameter, Ma, called the Markstein number which 
can either be evaluated theoretically for a particular chemical scheme or measured 
experimentally (Searby & Quinard 1990). However volume heat losses and boundary- 
layer effects are not included here. 

Secondly, we provide a detailed experimental study of a stationary premixed 
propane flame in an imposed acoustic field. This configuration is simpler than that 
of the transitory self-excited flame used in previous studies. Since all the parameters 
are controlled independently, it allows for precise measurements of the instability 
threshold and of the size of associated structures on the flame front which can be 
compared with the values predicted by the theoretical expressions. 

Section 2 is devoted to the presentation of theoretical results concerning flame 
dynamics. In  $3 we present the theory of the parametric instability, in $4 we present 
our experimental results and compare them with the theoretical calculations. 
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2. The laminar flame model 
We consider an infinite quasi-planar laminar flame propagating downwards with 

respect to gravity and subjected to a planar acoustic field whose wave vector is 
normal to the average flame front and whose wavelength, A ,  is very large compared 
to the thickness, d ,  of the diffusion zone associated with the flame front. We use the 
results obtained for the multi-scale wrinkled flame model introduced by Clavin & 
Williams (1982).  The original model has been extended to include the effects of 
hydrodynamic feedback (PelcB & Clavin 1982). This model is valid in the limit of a 
high normalized activation energy, ,!?+ 00, and in the limit of large-scale wrinkling, 
d/h -+ 0, where h is the lengthscale of wrinkling. These restrictions will be satisfied by 
the experimental conditions used below. 

For the sake of simplicity we will use, as a starting point, the results of Searby & 
Clavin (1986) concerning the response of a wrinkled flame to a weakly turbulent 
upstream flow. Coupling reaction diffusion phenomena with hydrodynamic effects, 
they have obtained an equation for the local evolution of a fluctuation of the flame 
front position a ( k , w )  in terms of an arbitrary upstream turbulent flow, ue(k ,w) ,  
where k is the wavenumber of a Fourier component of wrinkling of the front and o 
is the frequency (see their equation ( 2 6 ) ) :  

[(iw)2A + iwB+ C] a(k, w )  = u,(k, w ) .  ( 1 )  

In the following, unless specified otherwise, the units of length and time are 
normalized by the flame thickness, d ,  and the flame transit time, 7 ,  respectively, so 
that k is a small quantity. The values of d and T are defined by: d = Dth/UL, 
T = d/U, ,  where D,, is the thermal diffusivity of the fresh mixture and U, is the 
laminar flame velocity. The coefficients A, B and C are given by: 

2 
B = 2k+-k2(Mu-J) ,  

1-Y 

C = -k--k2 Y { I + -  ';:(Ma-$)} Fr l-y 

where y = (p,-pb)/pu is the normalized gas expansion coefficient, p is the gas 
density, the subscripts u and b refer t o  the unburned and burned gases respectively. 
8 = (T-Tu) / (Tb-q )  is the normalized temperature, h(0) is the ratio of thermal 
diffusivity multiplied by density a t  temperature 0 to its value in the unburned gases, 
h, is the value of h(8) in the burned gases, Pr is the Prandtl number, assumed to be 
independent of the temperature, the inverse Froude number, Fr-l,  is the 
dimensionless acceleration gd/Uk where g is the acceleration due to gravity, 

and Ma is the Markstein number, of order unity, which is a measure of the sensitivity 
of local flame velocity to curvature and stretch (see for instance Clavin 1985). For a 
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simplified flame model with a one-step chemical reaction, an asymptotic expansion 
in large values of the Zeldovich number, p $ 1, yields the following expression for the 
Markstein number: 

h(8) In (8) d8 

1 + W ( l - Y ) ’  

*J 

Y 
Ma = - -$(Le-  1 )  (4) 

where the Zeldovich number, p, is the reduced activation energy of the reaction rate 
and the Lewis number, Le, is the ratio of the thermal diffusivity in the reactive 
mixture to the molecular diffusivity of the deficient species. Le is assumed to be 
constant and such that Le - 1 x O(l/p). 

Taking the inverse time Fourier transform of ( I )  we obtain, in the absence of 
upstream turbulence (u, = 0), the following equation of motion for the flame front : 

Adi,,(k,t)+Hoi,(k,t)+Col(k,t) = 0. ( 5 )  

where the dots denote time derivatives. This equation has the form of a damped 
harmonic oscillator. The damping, B, is always positive. The stability of the planar 
solution for the front depends on the sign of the coefficient C. This problem has been 
discussed by Pel& & Clavin (1982). The sign of C depends on the values of the Froude 
number, the wavenumber of the wrinkling and on the diffusive properties of the 
mixture. However, except for very slow downward propagating flames, C is always 
negative for some range of wavenumbers, implying that the planar front is unstable. 
The physical origin of the instability is hydrodynamic. as first described by Darrieus 
(1938) and by Landau (1945). 

In  the problem considered here, the flame front is periodically displaced by a 
planar sound wave. The front is invariant by translation but the Froude number in 
(2) must be replaced by a term containing the total dimensionless acceleration 
experienced by the front, : 

where w, is the dimensionless acoustic frequency and u, is the dimensionless acoustic 
velocity a t  the front. Separating the coefficient C into a constant part C, and a time 
dependent part C,, ( 5 )  becomes: 

(6) Adi,,(k, t )  +B&,(k, t )  + [C ,  -Cl cos (w, t ) ]  a(k,  t )  = 0: 

with C, = ykw,u,{ l-k(Mu-+)}, (7)  

equation (6) is now in the form of a parametrically driven damped harmonic 
oscillator, with coefficients which depend on the wavelength of wrinkling of the front. 
A phenomenological equation of the same form as (6) has been proposed previously 
by Markstein (1951). The contribution of the development described above is to give 
theoretical expressions for the coefficients A ,  B and C which are obtained from a 
rigorous analysis of the flame structure. It is important for the following to  stress 
that Mu is the only parameter whose theoretical expression is sensitive to the details 
of the internal structure of the flame, represented by Le and /3 in the simple model. 
All the other coefficients can be obtained from knowledge of the flame temperature 
and the thermodynamic properties of the gases independently of the detailed 
transport properties and chemical kinetics of the reactive mixture. In contrast with 
kinetic properties, parameters such as the gas expansion coefficient). y ,  are easily 
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measured. Thus the theoretical expressions (2) provide a convenient framework for 
an experimental comparison with (6) in which Ma can be treated as the only free 
parameter. 

3. The parametric oscillator 
Following Markstein (1964) we make the following substitutions : 

a = Y(z)  epK2 city. I 
With these substitutions, (6) reduces to the well-known Mathieu equation : 

Y+[a-2qcos(2z)]Y = 0, (9) 

where the primes now denote differentiation with respect to z. The Mathieu equation 
is similar to that of the harmonic oscillator, but with a restoring force that is a 
periodic function of time. The solutions, Y(z)  of (9) may be written in the form 
(McLachlan 1951) 

Y ( 4  = A ,  exp ( P 4  fw +A2 exp ( -PZ) $5( -219 (10) 

where Al,  are two arbitrary constants, # ( z )  is a function that is periodic with period 
7t or 2n, and p(a,q) is either real or imaginary, corresponding to unstable or stable 
solutions respectively. From the change of variables in (8) it can be seen that the 
condition of marginal stability for the flame is given by p = K .  For given values of 
a (natural frequency squared) and q (amplitude of excitation), the corresponding 
value of ,u may be determined numerically by the continued fraction method (see for 
instance Abramowitz BE Stegun 1972). It must be remembered that a is a function of 
the wavenumber, k, so that the flame has no unique resonant frequency but a 
continuum of frequencies associated with a continuum of possible wavelengths of 
structures on the front. 

The standard variables a ,  q and ,u do not form a convenient set for representing the 
dynamic properties of a flame front. We will choose instead to present the results in 
terms of the physical dimensionless variables w,, u,, k, M a  and Fr. 

Figure 1 shows typical stability diagrams presented in the u,, k plane for various 
values of the reduced frequency, the Markstein number and the Froude number. The 
vertical coordinate should be thought of as the reduced acceleration (w, Ua)/(wa UL), 
which is the physical parameter driving the instability. The numerical values used in 
figure 1 ( a )  for the various parameters are representative of the flames presented in 
our experimental study. 

As already noticed by Markstein (1964), there are two distinct unstable regions, 
labelled I and 11. The lower region extends down to zero amplitude of acoustic 
excitation where it corresponds to the well-known Darrieus-Landau planar flame 
instability. It is stabilized at large wavenumbers by diffusive effects and a t  very 
small wavenumbers by the effect of gravity. In this domain the cellular structures on 
the front oscillate a t  the acoustic frequency. We identify these oscillations of flame 
area in this lower unstable region as the mechanism leading to the ‘primary ’ acoustic 
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FIGURE 1. Stability diagrams for parametrically excited flames in the plane of reduced acoustic 
velocity, u, = U,/U,, and reduced wavenumber, k = 2nd/A.  ( a )  The values of the dimensionless 
quantities are: w, = 1.0, Fr = 40 and Mu = 4.5. These values correspond to a laminar flame speed 
of 20 cm/s and a real frequency of 304 Hz. ( b )  Effect of changing the reduced frequency : w, = 0.05, 
Fr = 40 and Mu = 4.5. These values correspond to a laminar flame speed of 20 cm/s and a real 
frequency of 15 Hz. (c) Effect of changing the Markstein number: w, = 1.0, Fr = 40 andMa = 3.0. 
(Same flame speed and frequency as in (a.)  ( d )  Effect of changing the Froude number: w, = 1.0, 
Fr = 500 and Ma = 4.5. These values correspond to a laminar flame speed of 47 cm/s and a real 
frequency of 1639 Hz. The other parameters have values appropriate for a lean propane flame. 

instability of Searby (1991). A theoretical description of this phenomenon has been 
recently developed by Pelct5 & Rochwerger (1991). A remarkable feature is that  the 
Darrieus-Landau instability can be re-stabilized by the oscillating acoustic 
acceleration and in general there exists a range of reduced acoustic velocities in which 
the planar flame is stable. In  figure 1 (a)  the re-stabilization occurs when the local 
acoustic velocity is about 3.2 times the laminar flame velocity and ends when the 
acoustic velocity reaches about 6.3 times the laminar flame velocity. 

I n  the upper unstable domain the structures on the flame oscillate a t  half the 
acoustic frequency, it is the domain of parametric instability. The fact that a finite 
value of excitation is needed to excite this instability is directly related to the 
presence of a damping term in the original equation of evolution (6). We identify the 
oscillations of flame area in this upper unstable region as the mechanism leading to 
the ‘secondary ’ acoustic instability of Searby. The effects of the non-dimensional 
parameters w,, M a  and Fr on the extent of the domains of instability are shown in 
figures 1 ( b ) ,  1 (c) and 1 ( d )  respectively. 

Decreasing the reduced frequency, w, (decreasing real frequency or increasing 
flame velocity), causes both regions to move towards smaller reduced wavenumbers. 
It also lowers the threshold of the upper region and causes the upper limit of the 
lower region to move upwards. For sufficiently small w, the two regions can co-exist 
for some range of acoustic velocities and the planar flame is never stable because for 
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any reduced acoustic velocity there is always some unstable wavelength, as shown in 
figure 1 (b) .  For mathematical reasons the two unstable domains can never merge, 
but may become infinitely close. This type of stability diagram applies to  propane 
flames close to stoichiometry at frequencies below about 100 Hz. 

Decreasing the Markstein number causes both unstable regions to extend towards 
larger wavenumbers and also lowers the threshold of the upper region. Again, at a 
given frequency, the two regions overlap for values of the Markstein number below 
some critical value, as shown in figure 1 (c), and the planar flame is never stable. This 
type of stability diagram corresponds to  rich hydrocarbon flames and to lean 
hydrogen flames. 

Increasing the Froude number (increasing flame speed a t  constant w,) has almost 
no effect on the upper unstable region and little effect on the lower region provided 
that Fr 2 20 (flame velocity 2 15 cm/s), see figure 1 (d) .  For values of the Froude 
number below about 20, the lower region becomes sensitive to Fr and shrinks 
towards the u, = 0 axis as Fr decreases. It disappears completely for sufficiently 
small values of Fr for which the coefficient C in (2) is always positive (not shown in 
figure 1). The upper region is relatively insensitive to  Fr except a t  very small reduced 
frequency. This lack of sensitivity of the upper threshold to Fr will be used in the 
experimental section to enable the results to be presented as a function of a single 
parameter, w,. 

4. Experiments 
We have made an experimental study of the threshold of excitation of the upper 

region, 11, in an imposed acoustic field. This type of experiment has not been 
reported previously in the literature. We used the apparatus shown in figure 2. This 
is a steady state experiment in which a freely propagating flame is kept stationary 
in the laboratory frame and interacts with a standing acoustic field generated by a 
loudspeaker. Previous experiments have used either transitory or anchored flames. 

The walls of the burner were uncooled Pyrex glass tubes of various lengths and 
diameters. Premixed propane-air mixtures were fed into the bottom of the burner 
and traversed a 20 pm porous plate which killed turbulence and imposed a quasi top- 
hat velocity profile in the burner. The flame was kept stationary by manually 
adjusting the gas flow rate to exactly equal the mass consumption rate of the flame. 
Once stabilized, the heat released by the flame creates an abrupt longitudinal 
temperature gradient in the burner walls a t  the position of the flame front. This 
temperature gradient was then sufficient to stabilize the flame position with respect 
to small misadjustments of the gas flow rate. Because of the non-zero thermal 
conductivity of the Pyrex glass, this region of temperature gradient propagated 
upstream a t  about 0.5 mm/s carrying the flame front with it. This slow propagation 
could be eliminated by selectively cooling the burner ahead of the flame position, but 
this precaution proved to  be superfluous in these experiments since only a few 
minutes were required to perform each series of measurements. Cooling the 
downstream walls of the burner causes strong thermal convection cells to form 
behind the flame, disrupting the top-hat velocity profile and perturbing the 
dynamics of the flame. Downstream cooling was not used here. 

The tube was excited acoustically at one of its resonant frequencies by a 
loudspeaker mounted just below the porous plate. The burner was excited in either 
the a wavelength or the wavelength longitudinal mode. In these modes there is a 
velocity node at the closed end of the burner and a pressure node in the vicinity of 
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FIGURE 2. Diagram of the experimental apparatus. Tube lengths were 5CL150 cm with diameters 
of 6 and 10 cm. The flame front was held at constant height by adjusting the mixture flow velocity. 

the open end. The pressure fields in the cold tubes were investigated with a small 
microphone and it was found that, a t  resonance, the pressure antinode was always 
situated within 1 or 2 mm of the porous plate. The presence of the flame changes the 
resonant frequency of the tube because of the increased sound velocity in the burned 
gases and the phase jump a t  the density interface associated with the flame, however 
the lower pressure antinode remains attached to the porous plate. A piezoelectric 
pressure sensor, placed adjacent to the porous plate, was used to  measure the 
acoustic pressure level in the experiments with flames. Knowing the acoustic 
pressure at  the bottom of the burner and the frequency of the standing wave, the 
phase and acoustic velocity a t  the flame front is easily calculated. 

The flame front was maintained approximately one diameter from the burner exit. 
The flames were thus situated close to a pressure node, so that energy feedback into 
the acoustic wave was small and spontaneous acoustic oscillations were not observed. 
I n  a typical experiment, the acoustic level was adjusted to  produce a stable planar 
flame and the flame was positioned one diameter from the open end of the tube. 
Extremely flat flames could be obtained in this way, see figure 3. The frequency of 
excitation was re-adjusted to exact resonance and the acoustic level was slowly 
increased until the threshold, uz, was reached and structures appeared a t  a finite 
wavenumber k*, see figure l ( a ) .  This experiment was repeated for different 
equivalence ratios and for different acoustic frequencies. The structures appeared 
abruptly, and for a single experiment, the level of threshold could be determined to 
within 1 %, however, the thermal gradients just ahead of the flame front produced 
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FIGURE 3. Side-on photograph of a planar propane-air flame stabilized by the presence of an 
acoustic field, just below the threshold of paramr:tv:c. irlstability. Equivalence ratio = 0.585, 
w, = 0.58, Fr = 10.6. 

slight deviations from the top-hat velocity profile and the associated velocity 
gradients caused experiment-to-experiment variations of up to 5 %. 

The experiments were limited to the range of conditions for which the planar flame 
can exist, i.e. for flames whose two domains of instability are well separated as in 
figures l ( a )  or l ( d ) .  We have chosen to work with sufficiently lead propane air 
mixtures because it is known that the Markstein number of these flames is nearly 
constant and has an experimentally measured value of 4.5f0.5 (Searby & Quinard 
1990). For this value of the Markstein number and for the frequencies used in the 
experiments, this condition poses an upper limit of roughly 20 cm/s on the flame 
velocity. The minimum value of flame velocity was limited only by the weak 
cxtinction limit a t  approximately 7.2 cm/s. For propane-air flames close to 
stoichiometry the stability diagram is of thc type shown in figure 1 ( b )  and the planar 
flame is never stable for any acoustic intensity. For rich propane-air mixtures the 
Markstein number is known to be much smaller and thc stability diagram is of the 
type shown in figure 1 ( c ) ,  again with no region of stability for the planar flame. In 
the light of the above considerations the propane-air flames were restricted to 
equivalence ratios in the range 0.5 < @ < 0.7. 

The experiments were carried out with tubes of various lengths (150, 100 and 
50 cm) and two diameters, 10 cm and 6 cm. The frequency of excitation was varied 
from 57 Hz (150 cm tube, fundamental mode) to 265 Hz (100 cm tube, first 
harmonic). The 50 cm tube was not used at  its harmonic frequency because the 
acoustic losses were too great. The instability threshold was reached with power 
levels of a fcw watts a t  the loudspcakcr. Typical acoustic velocities a t  the flame were 
of the order of 1 m/s and the corresponding acoustic accelerations were of the order 
of 500 m/s2. Changing the diameter of the tube produced no significant change to the 
thresholds indicating that boundary effects, such as those invoked by Kaskan, were 
not dominant. 
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FIGURE 4. Experimental determination of the threshold of parametric instability in reduced 
coordinates w, and u,. The points represent 160 independent measurements on flames of different 
speeds a t  different acoustic frequencies in tubes of different lengths and diameters. We also show 
the calculated value for the threshold. -, Ma = 4.5; ---, Ma = 4.0, 5.0. +, threshold obtained 
from Searby (1991), his figure 4 ( b ) .  

Dimensioned constants 
g = 981 cm/s2 
D,, = 0.22 cm2/s 

Acceleration due to gravity 
Thermal diffusivity in unburned gas 

Pr = 0.689 
y = 0.822 
h, = 3.19 
H = 0.96 
J = 3.33 

Dimensionless constants 
Prandtl number 
Normalized gas expansion factor 
Normalized gas diffusivity 

Dimensioned variables 
= Dth/uL Flame thickness 

r = D,, /U; Flame transit time 

w, = a,? 
u, = U,/UL 
k = 2nd /h  
Fr = U2,/gd 
Ma 

Dimensionless variables 
Frequency of excitation 
Amplitude of excitation 
Wave number of structures on front 
Froude number 
Markstein number 

TABLE 1. Pu’umerical values used in calculations 

The experimental results for the threshold of parametric instability are plotted in 
figure 4. All the results have been plotted in the reduced variables o, and u,. The 
reduced frequency was varied both by changing the frequency of excitation and by 
changing the flame velocity. It can be seen that in this representation the results of 
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160 different measurements collapsed onto a single curve, within experimental 
errors. The solid and dotted lines in figure 4 represent calculated values of the 
threshold, for three different values of Mu, using the analysis presented in $3 .  These 
curves are the locus of the minimum of the domain of parametric instability of which 
one point is shown in figure l ( a ) .  The calculated position of this minimum is 
essentially a function of the reduced frequency w, and of the Markstein number, Mu. 
It is also a function of the other mixture dependent properties such as Fr, y ,  &, J ,  
H .  However, although the flame speed varies considerably (from about 7-20 cm/s in 
these experiments) the quantities y ,  It,,, J ,  H ,  are only slow functions of the burnt gas 
temperature and in fact do not vary very much over the range of mixtures used here 
(0.5 < @ < 0.7) .  For example y varies from 0.80 to 0.839. We have evaluated them 
for adiabatic combustion at  an average equivalence ratio of @ = 0.6 and, for 
simplicity, we have assumed them to be constant, thus permitting the theoretical 
results to be presented as a function of only a small number of parameters. The 
numerical values we have used are given in table 1 .  

The Froude number, Fr, varies very rapidly with the flame speed, so w, and Pr are 
indeed independent parameters. However, at  high flame speeds, 1/Fr is a very small 
number and can be neglected, at  low flame speeds 1/Fr is not a small number and 
the extent of the lower domain of instability depends strongly on the value of Fr. 
Nevertheless, for the frequencies used here, the position of the minimum of the upper 
domain varies only slightly (less than 4%) when 1/Fr is varied from infinity to zero 
(see figures l ( u )  and l ( d ) ) .  Since the experimental errors exceed 470 ,  we have set 
1/Fr = 0 for the purposes of calculating the thresholds in figure 4, allowing the 
theoretical results to be plotted as a function of only two independent variables, w,, 
and Mu. 

Searby & Quinard (1990) have experimentally measured the value of the 
Markstein number for a number of fuels. For lean propaneair mixtures they find 
that Mu = 4 . 5 f 0 . 5  with negligible variation for equivalence ratios between @ = 0.5 
and @ = 0.9. This fmding is quite compatible with the theoretical expression for Ma, 
given by (4), and based on a very simple flame model which was, u priori, not 
expected to be quantitatively good for a real fuel. The solid line in figure 4 was 
calculated using the value Mu = 4.5 along with the values given in table 1. It can be 
seen that the experimental points closely match the calculated thresholds. For 
comparison we have also shown the calculated thresholds for mixtures with 
Markstein numbers Mu = 4.0 and Ma = 5.0. These curves show that the instability 
threshold is quite sensitive to the Markstein number and in fact measurements of this 
type may be used as a means of determining Ma. 

We have also investigated the size of the structures which appear at the instability 
threshold. Figure 5 (u) shows a photograph of the flame front just after the threshold, 
taken at an instant when the cellular amplitude is maximal. The structure is fairly 
regular, but the spatial correlation of orientation is low. The average cell spacing was 
obtained from these photographs by taking the two-dimensional Fourier transform 
as shown in figure 5 ( b ) .  In this figure the signal-to-noise ratio has been improved by 
averaging the transforms of five independent images. The circle of wave vectors is 
well defined showing that the cell spacing is nearly constant, but with a random 
orientation in space. In figure 6 we show the results obtained for flame speeds 
between 8 cm/s and 20 cm/s a t  excitation frequencies of 57, 102 and 175 Hz. The 
results are plotted in the reduced coordinates, w, and k, again it can be seen that the 
twelve experimental results collapse onto a single curve. The vertical error bars 
represent one Fourier component in the wavenumber space of figure 5 ( b ) .  The solid 
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FIGURE 5. (a) Head-on photograph of acoustically excited structures on flame front. Equivalence 
ratio = 0.573, w, = 0.528, Fr = 8.5. The average size of the structures is 1.1 cm. (6) Averaged two- 
dimensional Fourier transform of images including figure 5 (a). 

line represents the locus of k* in figure 1 ( a )  as a function of reduced frequency, 
calculated from (2) and (6) with the numerical values givcn in table 1 and with 
Ma = 4.5. The calculated response of the flame is again in close agreement with 
the experimentally measured values. 
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FIGURE 6. Experimental determinations of the reduced wavenumber, k*, of the acoustically 
excited structures at threshold, as a function of the reduced frequency, w,. We also show the 
calculated value, solid line, evaluated with Mu = 4.5. 

5. Conclusions 
Using recent laminar flame theory, we have given a theoretical and experimental 

study of a parametric acoustic instability of planar flames, first recognized by 
Markstein (1953). The physical mechanism driving this instability is the periodic 
acceleration of the interface (flame) separating two regions of different density. An 
acoustic field of moderate intensity can first stabilize the natural Darrieus-Landau 
instability of premixed flames and then, at a higher intensity, produce a parametric 
cellular instability with a well-defined threshold and associated with a well-defined 
critical wavenumber. 

Our experimental observations on lean, well controlled propaneair flames 
stabilized dynamically in an imposed acoustic field confirm all these points. We have 
measured the thresholds and critical wavenumbers. Such lean premixed propane air 
flames with an equivalence ratio between 0.5 and 0.9 are known experimentally to 
have an almost constant Markstein number, Ma = 4.5 (Searby & Quinard 1990). The 
other properties of the mixture are well known (see table 1) so that there are no 
adjustable parameters for the comparison between experimental and theoretical 
results. The calculated results are in remarkably good quantitative agreement with 
the experimental observations, indicating that the laminar flame theory presented in 
§$2 and 3 is providing a good quantitative description of the dynamics of flame fronts 
including acceleration effects. In  the light of the sensitivity of the theoretical results 
to variations ofMa, our work provides, as a byproduct, a general method which may 
be used as a tool to measure the Markstein number of other flames. 

Finally, the instability threshold observed with an imposed acoustic field may be 
compared with that observed by Searby (1991) in the case of self-excited acoustic 
oscillations of a transitory flame propagating freely in a tube. From his figure 4 ( b )  it 
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can be seen that when the secondary instability is triggered, the acoustic pressure a t  
the bottom of the tube is 700 Pa and the flame is 0.49 m from the bottom. The 
acoustic frequency is 122 Hz so the acoustic velocity a t  the flame, U,, is easily 
calculated to be 1.45 m/s. The flame velocity is 27.5 cm/s giving u, = 5.3 and 
w, = 0.22. This data point is indicated in our figure 4. It lies close to our experimental 
points, indicating that the mechanism responsible for his self-excited secondary 
instability is indeed the parametric instability described here and also that the 
complete feedback mechanism, including acoustic losses, has little effect on the 
absolute threshold. It remains to be shown that this parametric mechanism can 
explain the very high growth rate observed in such self-excited instabilities. 

We are grateful to P .  Clavin and to P.  Pelc6 for their suggestions and enlightening 
discussions and to R. Miorcec de Kerdanet for his help with the experiments. This 
work was carried out in partial fulfilment of a contract DRET no. 88-210. 
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